" How 16 make the rlght hardware choice for

DEEP LEARNING
TRAINING AND INFERENCE APPLICATIONS

There are many factors to bear in mind when addressing deep learning training and inference.
Here's a quick guide to help you identify the optimal tool to meet your specific needs.

BEFORE YOU GET STARTED, CONSIDER THESE QUESTIONS:

How often do you need
to train your model,
both initially and after
it has been deployed?

-

What are your
cost constraints?

What type of hardware
architecture do you already
have in your workstations
or server rack?

TRAINING

What kirid of data are you
using as your training set?

(%

Can you train during .
off-peak hours?

AES

Can you deal with the
software complexities of
multiple architectures?

Though only 10 to 15% of a typical workflow, training a model is a key step in harnessing the power
of artificial intelligence. In this phase, the algorithm seeks to learn features and patterns from the data
you feed it, later applying that knowledge to unseen data. Think of showing millions of examples of
bone images to an algorithm that will be trained to identify bone density for radiologists. Training can

take several hours to several days.

CPUs

For many applications—such as high-
definition-, 3D-, and non-image-based
deep learning on language, text, and
time-series data—CPUs shine. This is
especially true for memory-intensive
data, including massive amounts of
unstructured data as well as sparse
data. Infrequent training (fewer than
10 times per year) may also be a factor
in staying on CPUs.

Pros

1. Al applications can be run side by side
with other applications, maximizing
hardware utilization

2. Larger, memory-intensive models can be
trained with greater ease

3. Data can be accessed from the same
infrastructure on which you train, saving
the time it would take to port data from
one architecture to another

4. Utilization can be maximized, which
can contribute to improved total cost of
ownership

5. Public cloud instances of CPUs are
typically far less expensive than GPUs,
especially when training for extended
periods on large models

6. If your training workload is not time
sensitive, CPUs may be a viable
alternative to GPUs

Cons

1. If you are training models frequently,
the lower speed can potentially cost you
valuable time

2. The same training will typically require
more cycles with a CPU than when using
a GPU

INFERENGE

GPUs

For deep learning training with
several neural network layers or on
massive sets of certain data, like 2D
images, GPUs or other accelerators
can be your best bet. GPUs also
tend to be the better choice for fast
deep learning as the simple matrix
math calculations greatly benefit
when computations can be done in
parallel.

Pros

1. Fast training on certain types of data

Cons

1. Hardware may not be utilized to full
capacity

2. Memory limitations require you to break
down images or your model, resulting in
more work and/or subpar results

3. Data must be ported from one
architecture to another when transferred
from GPUs to CPUs in the data center

4. Can add cost, complexity, and operational
expenses

After your model is trained, you'll put it to work with inference, or the inferring of something about
data it has never seen before. Inference cycles already surpass those of training by anywhere from
10x to 1000x, depending on the application. Today, inference primarily runs on CPUs, and a typical
deployment will use a mix of neural networks and other types of compute power. Facebook uses CPUs

for 100% of its current inference applications.

As deep learning has been adopted more broadly, there has been a clear shift in the ratio between
cycles of inference and training. Our conservative internal estimate predicts a move from 1:1 in the
early days of deep learning to potentially more than 10:1 by 2020. With inference taking a large
majority of the workflow, it is critical to use hardware architectures well suited to those needs,

meaning low latency and often low power.

CPUs

Recent hardware changes have
enhanced the naturally good inference
performance of CPUs. Coupled with
all-new software optimizations and
tools, this means the CPU has never
been more performant for Al
inference. There is also unprecedented
diversity in acceleration hardware for
robust and sustained inference

GPUs

GPUs excel at performing matrix
operations that relied on by graphics,
Al, and many scientific algorithms.
Due to their parallel computing
capabilities, GPUs can be useful for
inference. But as Al models continue
to grow in complexity, inference for
real-world deployments increasingly
favors CPUs.

applications. As inference is not as
resource heavy as training, CPUs are
economical as well.

Pros

1. When inference speed is a bottleneck,
GPUs can provide financial and time gains

Pros 2. By design, GPUs can work well for tasks

1. Real-world applications have increasingly like image recognition

stricter latency, a CPU strength 3. GPUs may be a cheaper option today

2. The newest CPUs can support much Cons
more of the system memory required for , ,
complex models 1. GPUs have inherent memory constraints

2. GPUs can be power hungry, which

3. CPUs can extend further to the edge, ) i )
conflicts with the needs of edge devices

including devices, unlike GPUs, allowing a
similar architecture from training through 3. GPUs are less common in infrastructure
deployment that may already need to be utilized and

4. CPUs are well suited to new options upgraded to support Al applications

like using pretrained models or transfer
learning

5. CPUs already power laptops,
workstations, robotics, some phones and
smart speakers, and vehicles, etc.

Cons

Given today’s inference demands and the
capabilities of current technology there
are no significant downsides to using a
CPU for inference.
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2nd Gen Intel® Xeon® Scalable processor
M platform performance
XEON'
RLATINUM Al includes a wide variety of machine learning and

analytics techniques, but its connection with deep |NFERENCE THRUUGHPUT

learning has most captured the interest and imagination of today’s
achieved using an Intel® Xeon® Platinum 8180

innovators. : _

processor running Intel-optimized Caffe* GooglLeNet*
v1 with Intel® Math Kernel Library for Deep Neural
Networks (Intel® MKL-DNN), vs. an Intel® Xeon®
processor E5-2699 v3 with BVLC-Caffe*

latency mference appllcatlons "Fl‘SGAs offer a unique blend
of flexibility, performance and extenS|b|lrty unmatched by
custom ASICs or GPUs. 5

Intel® Xeon® Scalable processors are optimized specifically to run high-
performance deep learning inference. Most deep learning, including
computer vision and inference, already runs on Intel® Xeon® processors

as they are the foundation of many of the world’s data centers. The
hardware performance of Al applications can further benefit from software

optimizations.
Our new 2nd Generation Intel Xeon Scalable processors have Al built in,
offering significant leaps in inference performance, memory, and bandwidth

that accelerate complex Al applications. The processors have been enhanced |NFERENCE THRUUGHPUT |MPROVEMENT

with substantial improvements in software optimizations and hardware
instructions, giving you the flexibility you need for both Al and the vast range enlEl el Fain e B2 presesser it i
Deep Learning Boost (Intel® DL Boost)

of data-centric applications.
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TRAINING THROUGHPUT

Intel® Optane™ DC persistent memory — Achieve up to triple the maximum achieved using an Intel Xeon Platinum 8180 processor
storage per node and enable more memory closer to the CPU so data can it e piERl G ET il
MKL-DNN, vs. an Intel Xeon processor E5-2699 v3 with

be sustained even throughout power cycles or system maintenance. BVLC-Caffe!

Intel® Deep Learning Boost technology — This cross-platform tool features
a model optimizer and inference engine to streamline and simplify model
deployment. Access a new set of embedded accelerators (vector neural
network instructions, or VNNIs) to speed up the dense computations of
convolutional neural networks (CNNs) and deep neural networks (DNNs).
The low-precision integer operations deliver up to 30x improvement in
inference performance.?

This is Al on Intel.

To boost performance, we've also optimized the software tools and frameworks
widely used today for Intel Xeon Scalable processor-based platforms:

Tensor @xnet © Caffe? 4 PaddlePaddle

The best results are achieved when the right tool is used for the job. Today's CPUs and
GPUs each boast distinct benefits, but neither is perfect for every environment or goal.
To unlock the greatest possible impact for your deep learning application, ensure that
you are using the optimal solution throughout training and inference.

Learn more about deep learning, and how Intel is powering Al across an exciting set
of industry use cases, by visiting

If you are a developer, find tools and resources at

For more information on Intel Enterprise Solutions for Al, please contact us today.

Enterprise Technology International
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Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific
computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, visit intel.com/performance.

Intel does not control or audit the design or implementation of third-party benchmark data or websites referenced in this document. Intel encourages all of its customers to visit the referenced websites or others where
similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase

Optimization notice: Intel® compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel® microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel® microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the specific instruction sets covered by this notice

Performance results are based on testing as of 06/15/2018 (v3 baseline), 05/29/2018 (241x), and 06/07/2018 (277x) and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.

Up to 30X Al performance with Intel® Deep Learning Boost (Intel DL Boost) compared to Intel® Xeon® Platinum 8180 processor (July 2017). Tested by Intel as of 2/26/2019. Platform: Dragon rock 2 socket Intel® Xeon
Platinum 9282(56 cores per socket), HT ON, turbo ON, Total Memory 768 GB (24 slots/ 32 GB/ 2933 MHz), BIOS: SE5C620.86B.0D.01.0241.112020180249, Centos* 7 Kernel 3.10.0-957.5.1.el7. x86_64, Deep Learning
Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe d554cbf1, ICC 2019.2.187, MKL DNN version: v0.17 (commit hash: 830a10059a018cd-2634d94195140cf2d8790a75a), model: https://
github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=64, No datalayer DummyData: 3x224x224, 56 instance/2 socket, Datatype: INT8 vs Tested by Intel as of
July 11th 2017: 2S Intel® Xeon® Platinum 8180 cpu @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS* Linux release
7.3.1611 (Core), Linux kernel* 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP_AFFINITY="granularity=fine,
compact', OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (https://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c.
Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage
and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),. Intel C++ compiler ver. 17.0.2 20170213, Intel® Math Kernel Library
(Intel® MKL) small libraries version 2018.0.20170425. Caffe run with “numactl -1".

1. INFERENCE using FP32 Batch Size Caffe* GooglLeNet* v1 128 AlexNet* 256.
Configurations for inference throughput:

Tested by Intel as of 06/07/2018: Platform: 2-socket Intel® Xeon® Platinum 8180 CPU @ 2.50 GHz/28 cores HT ON; turbo: ON, total memory 376.28 GB (12 slots/32 GB/2666 MHz), four

instances of the framework, CentOS* Linux*-7.3.1611-Core, SSD sda RS3WC080 HDD 744.1 GB, sdb RS3WC080 HDD 1.5 TB, sdc RS3WC080 HDD 5.5 TB, deep learning framework Caffe* version:
a3d5b022fe026e9092fc7abc7654b1162ab9940d; topology: GoogleNet* v1 BIOS*: SE5C620.86B.00.01.0004.071220170215 MKL-DNN: version: 464c268e544bae26f9b85a2ach9122c766a4c396; NoDatalLayer.
Measured: 1449 imgs/sec vs. tested by Intel as of 06/15/2018; Platform: 2S Intel® Xeon® CPU E5-2699 v3 @ 2.30 GHz (18 cores), HT enabled, turbo disabled, scaling governor set to “performance” via intel_pstate
driver, 64 GB DDR4-2133 ECC RAM. BIOS: SE5C610.86B.01.01.0024.021320181901, CentOS Linux-7.5.1804 (Core) kernel 3.10.0-862.3.2.el7.x86_64, SSD sdb INTEL SSDSC2BW24 SSD 223.6 GB. Framework: BVLC-
Caffe: github.com/BVLC/caffe, inference and training measured with “Caffe time” command. For “ConvNet” topologies, dummy data set was used. For other topologies, data was stored on local storage and cached in
memory before training. BVLC Caffe (github.com/BVLC/caffe), revision 2a1c¢552b66f026c7508d390b526f2495ed3be594.

Configuration for training throughput:

Tested by Intel as of 05/29/2018: Platform: 2-socket Intel® Xeon® Platinum 8180 CPU @ 2.50 GHz/28 cores HT ON; turbo: ON, total memory 376.28 GB (12 slots/32 GB/2666 MHz), four instances of the framework,
CentOS* Linux*-7.3.1611-Core, SSD sda RS3WC080 HDD 744.1 GB, sdb RS3WC080 HDD 1.5 TB, sdc RS3WC080 HDD 5.5 TB, deep learning framework Caffe* version: a3d5b022fe026e9092fc7abc765b1162ab9940d;
topology: AlexNet BIOS: SE5C620.86B.00.01.0004.071220170215 MKLDNN: version: 464c268e544bae26f9b85a2ach9122c766a4c396; NoDatalLayer. Measured: 1257 imgs/sec vs. tested by Intel as of 06/15/2018;
platform: 25 Intel® Xeon® CPU E5-2699 v3 @ 2.30 GHz (18 cores), HT enabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 64 GB DDR4-2133 ECC RAM. BIOS: SE5C610.8
6B.01.01.0024.021320181901, CentOS Linux-7.5.1804 (Core) kernel 3.10.0-862.3.2.el7.x86_64, SSD sdb INTEL SSDSC2BW24 SSD 223.6 GB. Framework: BVLC-Caffe: github.com/BVLC/caffe, inference and training
measured with “Caffe time” command. For “ConvNet” topologies, dummy data set was used. For other topologies, data was stored on local storage and cached in memory before training. BVLC Caffe (github.com/
BVLC/caffe), revision 2a1c552b66f026c7508d390b526f2495ed3be594.

Performance results are based on testing as of 06/15/2018 (v3 baseline), 05/29/2018 (241x) and 6/07/2018 (277x) and may not reflect all publicly available security updates. See configuration disclosure for details
No product can be absolutely secure.

. Tested by Intel as of 02/26/2019. Platform: Dragon rock 2 socket Intel® Xeon® Platinum 9282 processor (56 cores per socket), HT ON, turbo ON, Total Memory 768 GB (24 slots/32 GB/2933 MHz), BIOS:SE5C620.8
6B.0D.01.0241.112020180249, CentOS* 7 Kernel 3.10.0-957.5.1.el7.x86_64, Deep Learning Framework: Intel® Optimization for Caffe* version: https://github.com/intel/caffe d554cbf1, ICC 2019.2.187, MKL-DNN
version: v0.17 (commit hash: 830a10059a018cd2634d94195140cf2d8790a75a), model: https://github.com/intel/caffe/blob/master/models/intel_optimized_models/int8/resnet50_int8_full_conv.prototxt, BS=64,
No data layer syntheticData:3x224x224, 56 instance/2 socket, Datatype: INT8 vs. Tested by Intel as of 07/11/2017: 2S Intel® Xeon® Platinum 8180 processor CPU @ 2.50 GHz (28 cores), HT disabled, turbo disabled,
scaling governor set to “performance” via intel_pstate driver, 384 GB DDR4-2666 ECC RAM. CentOS Linux* release 7.3.1611 (Core), Linux* kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD Data Center S3700 Series
(800 GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP AFFINITY= “granularity=fine, compact,” OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d
2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured
with “caffe time” command. For “ConvNet” topologies, synthetic dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.
com/intel/caffe/tree/master/models/intel_optimized_models(ResNet-50). Intel® C++ Compiler ver. 17.0.2 20170213, Intel® Math Kernel Library (Intel® MKL) small libraries version 2018.0.20170425. Caffe run with
“numactl -1.”
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Intel® technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration. No computer

system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com/benchmarks.
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